A Simplified Algorithm for Inverting Higher Order Diffusion Tensors

نویسندگان

  • Laura Astola
  • Neda Sepasian
  • Tom C. J. Dela Haije
  • Andrea Fuster
  • Luc Florack
چکیده

In Riemannian geometry, a distance function is determined by an inner product on the tangent space. In Riemann–Finsler geometry, this distance function can be determined by a norm. This gives more freedom on the form of the so-called indicatrix or the set of unit vectors. This has some interesting applications, e.g., in medical image analysis, especially in diffusion weighted imaging (DWI). An important application of DWI is in the inference of the local architecture of the tissue, typically consisting of thin elongated structures, such as axons or muscle fibers, by measuring the constrained diffusion of water within the tissue. From high angular resolution diffusion imaging (HARDI) data, one can estimate the diffusion orientation distribution function (dODF), which indicates the relative diffusivity in all directions and can be represented by a spherical polynomial. We express this dODF as an equivalent spherical monomial (higher order tensor) to directly generalize the (second order) diffusion tensor approach. To enable efficient computation of Riemann–Finslerian quantities on diffusion weighted (DW)-images, such as the metric/norm tensor, we present a simple and efficient algorithm to invert even order spherical monomials, which extends the familiar inversion of diffusion tensors, i.e., symmetric matrices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison between fourth and second order DT-MR image segmentations

A second order tensor is usually used to describe the diffusion of water for each voxel within a Diffusion Tensor Magnetic Resonance (DT-MR) images. However, a second order tensor approximation fails to accurately represent complex local tissue structures such as crossing fibers. Therefore, higher order tensors are used to represent more complex diffusivity profiles. In this work we examine and...

متن کامل

Spatial normalization of diffusion models and tensor analysis

Diffusion tensor imaging provides the ability to study white matter connectivity and integrity noninvasively. The information contained in the diffusion tensors is very complex. Therefore a simple way of dealing with tensors is to compute rotationally invariant scalar quantities. These scalar indices have been used to perform population studies between controls and patients with neurological an...

متن کامل

Single DV-DXCCII Based Voltage Controlled First Order All-pass Filter with Inverting and Non-inverting responses

In this paper, a new voltage controlled first order all-pass filter is presented. The proposed circuit employs a single differential voltage dual-X second generation current conveyor (DV-DXCCII) and a grounded capacitor only. The proposed all-pass filter provides both inverting and non inverting voltage-mode outputs from the same configuration simultaneously without any matching condition. Non-...

متن کامل

Higher-Order Tensors in Diffusion Imaging

Diffusion imaging is a noninvasive tool for probing the microstructure of fibrous nerve and muscle tissue. Higher-order tensors provide a powerful mathematical language to model and analyze the large and complex data that is generated by its modern variants such as High Angular Resolution Diffusion Imaging (HARDI) or Diffusional Kurtosis Imaging. This survey gives a careful introduction to the ...

متن کامل

Higher Order Positive Semidefinite Diffusion Tensor Imaging

Due to the well-known limitations of diffusion tensor imaging (DTI), high angular resolution diffusion imaging (HARDI) is used to characterize non-Gaussian diffusion processes. One approach to analyze HARDI data is to model the apparent diffusion coefficient (ADC) with higher order diffusion tensors (HODT). The diffusivity function is positive semi-definite. In the literature, some methods have...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Axioms

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2014